GLLiM class overall
- class GLLiM(L, D, K, gamma_type, sigma_type)
Gaussian Locally-Linear Model (GLLiM) for probabilistic modeling.
- Parameters:
L (int) – The latent space dimension.
D (int) – The observed space dimension.
K (int) – The number of Gaussian components.
gamma_type (str) – The type of gamma parameter among {‘full’, ‘diag’, ‘iso’}.
sigma_type (str) – The type of sigma parameter among {‘full’, ‘diag’, ‘iso’}.
- Returns:
An instance of the GLLiM class.
Main methods
Initialize the GLLiM model with given data and parameters.
Train the GLLiM model with given data and parameters.
Get the inverse parameters of the GLLiM model.
Compute the direct densities given input matrix x and its uncertainties.
Compute the inverse densities given input matrix y and its uncertainties.
Returns ann Insights structure with informations about initialisation and training time, log-likelihood and arguments.
Getters
Get the dimensions of the GLLiM model.
Get the constraints of the GLLiM model.
Get the parameters of the GLLiM model.
Get the mixture coefficients Pi.
Get the parameter matrix A.
Get the parameter matrix B.
Get the parameter matrix C.
Get the gamma parameters.
Get the sigma parameters.
Setters
Set the parameters of the GLLiM model.
Set the mixture coefficients Pi.
Set the parameter matrix A.
Set the parameter matrix B.
Set the parameter matrix C.
Set the gamma parameters.
Set the sigma parameters.
Structures
Describes the parameters of the GLLiM model theta = {Pi, A, B, C, Gamma, Sigma}.
Describes the constraints of the covariance matrices Gamma and Sigma.
Describes the results concerning a GLLiM density estimation (direct or inverse).
Describes the results concerning a GLLiM density estimation by the mean.
Describes the results concerning a GLLiM density estimation by the centroids.
Describes valuable information about initialisation and training (time, log-likelihood and configuration).
Describes valuable information about initialisation.
Describes valuable information about training.