GLLiM

GLLiM class overall

class GLLiM(L, D, K, gamma_type, sigma_type)

Gaussian Locally-Linear Model (GLLiM) for probabilistic modeling.

Parameters:
  • L (int) – The latent space dimension.

  • D (int) – The observed space dimension.

  • K (int) – The number of Gaussian components.

  • gamma_type (str) – The type of gamma parameter among {‘full’, ‘diag’, ‘iso’}.

  • sigma_type (str) – The type of sigma parameter among {‘full’, ‘diag’, ‘iso’}.

Returns:

An instance of the GLLiM class.

Main methods

initialize

Initialize the GLLiM model with given data and parameters.

train

Train the GLLiM model with given data and parameters.

getInverse

Get the inverse parameters of the GLLiM model.

directDensities

Compute the direct densities given input matrix x and its uncertainties.

inverseDensities

Compute the inverse densities given input matrix y and its uncertainties.

getInsights

Returns ann Insights structure with informations about initialisation and training time, log-likelihood and arguments.

Getters

getDimensions

Get the dimensions of the GLLiM model.

getConstraints

Get the constraints of the GLLiM model.

getParams

Get the parameters of the GLLiM model.

getParamPi

Get the mixture coefficients Pi.

getParamA

Get the parameter matrix A.

getParamB

Get the parameter matrix B.

getParamC

Get the parameter matrix C.

getParamGamma

Get the gamma parameters.

getParamSigma

Get the sigma parameters.

Setters

setParams

Set the parameters of the GLLiM model.

setParamPi

Set the mixture coefficients Pi.

setParamA

Set the parameter matrix A.

setParamB

Set the parameter matrix B.

setParamC

Set the parameter matrix C.

setParamGamma

Set the gamma parameters.

setParamSigma

Set the sigma parameters.

Structures

GLLiMParameters

Describes the parameters of the GLLiM model theta = {Pi, A, B, C, Gamma, Sigma}.

GLLiMConstraints

Describes the constraints of the covariance matrices Gamma and Sigma.

PredictionResult

Describes the results concerning a GLLiM density estimation (direct or inverse).

FullGMMResult

Describes the results concerning a GLLiM density estimation by the mean.

MergedGMMResult

Describes the results concerning a GLLiM density estimation by the centroids.

Insights

Describes valuable information about initialisation and training (time, log-likelihood and configuration).

InitialisationInsights

Describes valuable information about initialisation.

TrainingInsights

Describes valuable information about training.