GLLiM

This page describes the GLLiM methods implying getting information on GLLiM’s dimensions, constraints and GLLiMParameters.

Getters

getDimensions()

Get the dimensions of the GLLiM model.

Returns:

(string) A string describing the dimensions of the model.

getConstraints()

Get the constraints of the GLLiM model.

Returns:

(string) A string describing the constraints of the model.

getParams()

Get the parameters of the GLLiM model.

Returns:

(GLLiMParameters) An instance of GLLiMParameters containing the model parameters.

getParamPi()

Get the mixture coefficients Pi.

Returns:

(ndarray of shape (K)) A row vector of mixture coefficients.

getParamA()

Get the parameter matrix A.

Returns:

(ndarray of shape (D, L, K)) A cube containing the parameter matrix A.

getParamB()

Get the parameter matrix B.

Returns:

(ndarray of shape (D, K)) A matrix containing the parameter matrix B.

getParamC()

Get the parameter matrix C.

Returns:

(ndarray of shape (L, K)) A matrix containing the parameter matrix C.

getParamGamma()

Get the gamma parameters.

Returns:

(ndarray of shape (K, L, L)) Gamma is a ndarray containing the K covariance matrices of the mixture of Gaussian distributions that define the low-dimensional data.

  • In the case of Full covariance matrix (gamma_type = ‘full’), Gamma is of shape (K, L, L).

  • In the case of Diagonal covariance matrix (gamma_type = ‘diag’), Gamma is of shape (K, L) with Gamma[k] representing the variances vector of the k^{th} gaussian.

  • In the case of Isotropic covariance matrix (gamma_type = ‘iso’), Gamma is of shape (K) with Gamma[k] representing the unique variance of the k^{th} gaussian.

getParamSigma()

Get the sigma parameters.

Returns:

(ndarray of shape (K, D, D)) Sigma is a ndarray containing the K covariance matrices of the mixture of Gaussian distributions that define the high-dimensional data.

  • In the case of Full covariance matrix (gamma_type = ‘full’), Sigma is of shape (K, D, D).

  • In the case of Diagonal covariance matrix (gamma_type = ‘diag’), Sigma is of shape (K, D) with Sigma[k] representing the variances vector of the k^{th} gaussian.

  • In the case of Isotropic covariance matrix (gamma_type = ‘iso’), Sigma is of shape (K) with Sigma[k] representing the unique variance of the k^{th} gaussian.