This page describes the GLLiM methods implying setting GLLiMParameters.
Setters
- setParams(theta)
Set the parameters of the GLLiM model.
- Parameters:
theta (GLLiMParameters)
- setParamPi(Pi)
Set the mixture coefficients Pi.
- Parameters:
Pi (ndarray of shape (K))
- setParamA(A)
Set the parameter matrix A.
- Parameters:
A (ndarray of shape (D, L, K))
- setParamB(B)
Set the parameter matrix B.
- Parameters:
B (ndarray of shape (D, K))
- setParamC(C)
Set the parameter matrix C.
- Parameters:
C (ndarray of shape (L, K))
- setParamGamma(Gamma)
Set the gamma parameters. Shape depends on Gamma constraints. Gamma is a ndarray containing the K covariance matrices of the mixture of Gaussian distributions that define the low-dimensional data.
In the case of Full covariance matrix (gamma_type = ‘full’), Gamma is of shape (K, L, L).
In the case of Diagonal covariance matrix (gamma_type = ‘diag’), Gamma is of shape (K, L) with Gamma[k] representing the variances vector of the k^{th} gaussian.
In the case of Isotropic covariance matrix (gamma_type = ‘iso’), Gamma is of shape (K) with Gamma[k] representing the unique variance of the k^{th} gaussian.
- Parameters:
Gamma (ndarray of shape (K, L*, L*))
- setParamSigma(Sigma)
Set the sigma parameters. Shape depends on Gamma constraints. Sigma is a ndarray containing the K covariance matrices of the mixture of Gaussian distributions that define the high-dimensional data.
In the case of Full covariance matrix (gamma_type = ‘full’), Sigma is of shape (K, D, D).
In the case of Diagonal covariance matrix (gamma_type = ‘diag’), Sigma is of shape (K, D) with Sigma[k] representing the variances vector of the k^{th} gaussian.
In the case of Isotropic covariance matrix (gamma_type = ‘iso’), Sigma is of shape (K) with Sigma[k] representing the unique variance of the k^{th} gaussian.
- Parameters:
Sigma (ndarray of shape (K, D*, D*))